Training Wave-Net based on Extended Kalman filter

Hayder Mahdi Abul-Ridha Hilal A. Hussain Abood

drenghaider@yahoo.com Hilal hussain@uobabylon.edu.iq

University of Babylon University of Babylon
PhD. In Electrical Engineering MSc. In Electrical Engineering

Abstract—Wave-Net is a promise network which utilizes the wavelet transform in
building a new structure of neural network. Training is the major problem facing
researchers with the neural networks. In this paper, we use the extended Kalman
filter as an efficient tool in training the Wave-Net. The results show that the
ability of using extended Kalman filter as training algorithm for wave-net and
use it in classification problem and come up with good results especially in
reducing the number of iterations in training phase. A comparison between
extended Kalman filter and conventional back propagation, which are used in a
classification problem, show that the training with Kalman filter is better than
training with gradient descent.

Index Terms: wave-net, Extended Kalman filter, wavelet, Neural network.
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1. INTRODUCTION

Since the emergence of neural network, this field gains a great interest by the
researchers and new structures of neural networks have been proposed. Wave-Net is
one of the attractive structures of neural networks that combine the wavelet with neural
network to give a new model [Deghani , Ahmadi , and Eghtesad 2008].

Many structures of neural networks have been introduced, beginning with the
perceptron through Hopfield network, Feed forward neural network, radial basis neural
network, etc. A new direction trying to combine two fields or more to give a new
model, and all that toward building efficient neural network such as the hybrid neural
fuzzy network and other hybrid structures[Cheng-Jian and Cheng-Hung 2005]. All the
combinations of neural networks have been used extensively in classification,
recognition, control, and other problems [Lin ,Quan, and Yao 2006] ,[ Puskorius ,
Feldkamp 1994].
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Wavelet transform (WT) is a good tool for the analysis of signals and images. The
main merit of wavelet transform over Fourier transform is the ability of specifying the
time-frequency position [Kannan, Martin 1996]. Recent feature extraction methods
utilize WT to get the best components to be used as an input vectors to the classifiers
[Michael, Perz, Black, and Sammer 1993].

Learning process is the major problem with neural network where by which the
effective parameters are specified. While the back propagation represent a nice
procedure in the training of neural networks, but it carries a drawbacks, one of which
is the problem of local minima [Dan 1996 ]. Many algorithms have been proposed for
training neural networks in a trial to find a best and fast way for defining the weights
and other parameters.

Kalman filtering plays an essential role in systems theory and has found a wide
range of applications in engineering and non-engineering systems.[Xiao, Xie and
Minyue, 2008] ,[Dan 2002]..

This paper presents a way for training Wave-net by using extended Kalman filter
and a comparison with another learning algorithm which is the Gradient descent
method.

2. WAVE-NET STRUCTURES

Wave-net is a hierarchal structure network formed from artificial neural network
(ANN) with mother wavelet function as its bases functions to produce powerful
computational system for complex mapping and identification problems.

Fig. 1 shows the network design to solve identification problem with input layer and
one hidden layer with variable neurons and depend on Mexican hat mother wavelet as
a base of the hidden layer to produce outputs as a summation through the weights of
network.
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Fig. (1) Wave-Net structure



3. Network and Training Procedures

A notation of (W) will be used to describe the weight matrix of the network which is a
matrix of (c X m) dimensions, where c is the number of neurons in the hidden layer and
m is the number of outputs as in Eq. (1)
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The output of this network will be the sum of multiplication of the weights with the
response of the wavelet function in hidden layer as cleared in Eq. (2) for a set of L
input- out training vectors
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Where

A
Y': The ith output vector
X' : The ith input vector
Mex(t) = (1-t* )e_tz 2 is the Mexican hat mother wavelet function which is work here

as a base function of the hidden neurons,

i 2

: is the input the Mexican hat function of the ith input vector and kth

neuron of the hidden layer

dk: the translation parameter of the mother wavelet of the kth hidden neuron
b: the dilation parameter of the mother wavelet.

Eq. (3) shows the network (plant) description
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and z, = Mex(t,)

Now to train this network we have to find the error function and try to minimize the
error as cleared in Eq.(4)
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Where Y is the desired output of the network, to get the best performance from
network we should optimize it against its parameters (the weights and translation
parameter of mother wavelet). Here we took the dilation parameter to be constant (b
=1). For the first parameter it has shown in eq.(5) [Karayiannis, 1999].
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While for translation parameter for Mexican function mother wavelet as described in
eq(6-8)
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The Kalman filter addresses the general problem of trying to estimate the state of a
discrete-time linear system process that is governed by the linear stochastic difference

equations as in Eq.(9 & 10) [Kalman, 1960].

Xk = AX1 + Wiy ©)

And measurements equation:

Vi =HX +Vvi (10)

The random variables wy and vy represent the process and measurement noise
(respectively).They are assumed to be independent (of each other), white, and with
Gaussian probability distributions

p(w) ~N(0,Q)

p(v) ~N(O.R)



Q : the process noise covariance
R: the measurement noise covariance

but in our work the wavelet function is non linear, so here we can use extended
Kalman filter to over come the non- linearity problem. We can linearize the estimation
around the current estimate using the partial derivatives of the process and
measurement functions to compute estimates even in the face of non-linear
relationships as in Eq. (11 & 12).
szf(Xk_l) +W (11)
Yk=h(X) +Vi
Eq. (13) shows that Extended Kalman filter can be derived by using first-order Taylor
series approximations (neglecting higher order terms)
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We can update the error and obtain the best prediction by the recursion as in Eq. (14 &
15)
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X=X, = F(Xka1) = F(Xk1) — W, (14)

A A
X, = f(i(k_l)Jr F(xk_l—Axk_1)+Wk (15)
Y, =h(X)+H] (Xk—Xk) +V,
A
Now the desired estimation X can be obtained by the recursion described in Eq.(16)

A A A

Xk = F(Xk1) + K, [y, —h(Xk-1)]

K.=PH/ (R+H/PH)" (16)
P =F (PR - KkaTPk)FkT +Q

Ky: Kalman gain.

Py: the covariance matrix of the state estimation error.
A
Xk . the state estimation

Now to achieve the optimization problem in a form fit with Kalman filtering, we let
the elements of the weight matrix W and the translation parameter of the mother

wavelet d to be the state of a nonlinear system, and we constitute the output of the



wavelet network with the output of the nonlinear system to which the Kalman is

applied.
The state of the nonlinear system can then be written as in eq. (16)
x=w .. .w d ...d]J (16)

The block diagram of our proposed system is outlined in figure (2). The state of
the system has been modeled depending on the weights of wavenet and the translation
parameter of the Mexican hat base function. The initial value of the weights has been
given the same value, while the translation parameter is set to zero. After that a
system noise (uncertainty) is added.

The system will predict the output from input of current state and compare with
training set output, the error will correct the state of the system and the system error
covariance by changing the Kalman gain and system error covariance

This process will continue until we get acceptable error, Then the network will be
ready to use and solve the classification problem
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Fig. (2) Wavenet Training block diagram

4. RESULTS

We use Fisher's Iris data set [Fisher,1936] to train and test our wave-net, the dataset
consists of 50 samples from each of three species of Iris flowers (Iris setosa, Iris
virginica and Iris versicolor). Four features were measured from each sample, they are
the length and the width of sepal and petal, in centimeters.
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A program of MATLAB R2008a is used to train the network using 50% of the data
chosen randomly then it tested with the randomly chosen data, and the weights of the
wave-net were chosen to be zeros initially. After some experiments we found that the
best performance for the network was with in error rate of 0.001 to terminate the
training.

Here we test the network to check its performance. We change the number of hidden
layer and start with multi values of covariances P,Q and R and the result was reported
by measuring the average of the CPU time for 10 trials also get the average of
corrected outputs for the input vectors as shown in Fig. (3 & 4)
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Fig. (3) average CPU time before convergence against No. of cells in hidden layer with different
initial covariances
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Fig..(4) Performance of the network against No. of cells in hidden layer with different initial
covariances



As we notice from results the network succeed to overcome classification problem
with acceptable performance and with good time for CPU before the training converge
or locked in local minima which can not improve its error anymore.

Also its clear that initial covariances didn’t affect the training process with in the limits
we took here in our work (30, 40 and 60) while the number of hidden layers usually
improve the performance as increase till reach 6or 7 cells and the improvement will
not be noticeable.

The success of Kalman training is very clear in reducing the computational efforts in
compare with conventional back propagation algorithm Resilient back propagation,
Multilayer networks typically use sigmoid transfer functions in the hidden layers. The
results are shown in Fig. (5).

1':'3 T T T T T T T T T

......... Backpropagation
] — KALMARN

AVERAGE OF ITERATH BEFORE CONYERGEMCE
=]
T
1

10 1 | 1 | | | | 1 |

Mao. of Hide layrs

Fig. (5) average No. of iteration for learning process in logarithmic scale for both Kalman and
back propagation algorithms training against No. of cells in hidden layer

4. CONCLUSIONS

Our work here shows that we can apply Kalman filter in training wave-net network
and how this network succeed in classification problem.

Furthermore the results we have got show the big role of Kalman filter in reducing the
load on computer processing by reducing the number of iterations in learning phase
when compare with back propagation learning algorithm.

It’s suggested for future work to improve the performance of network to use the
dilation parameter in addition to translation parameter and weights to minimize the
error in training process to solve classification problem,
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