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Abstract—Wave-Net is a promise network which utilizes the wavelet transform in 
building a new structure of neural network. Training is the major problem facing 
researchers with the neural networks. In this paper, we use the extended Kalman 
filter as an efficient tool in training the Wave-Net. The results show that the 
ability of using extended Kalman filter as  training algorithm for wave-net and 
use it in classification problem and come up with good results especially in 
reducing  the number of  iterations in  training phase. A comparison between 
extended Kalman filter and conventional back propagation, which are used in a 
classification problem, show that the training with Kalman filter is better than 
training with gradient descent. 
 
Index Terms: wave-net, Extended Kalman filter, wavelet, Neural network. 
 

 :الخلاصة
ان اھم . تستخدم محول المويجة لبناء تركيب جديد للشبكة العصبية ة ھي شبكة واعدةبيان شبكة المويجة العص

مرشح كالمان المطور في ھذا البحث كاداة تم استخدام .مشكلة تواجه الباحثين ھي مشكلة تدريب الشبكة العصبية
تدريب بينت النتائج نجاح تطبيق مرشح كالمان المطور في امكانية  حيث. كفوءة في تدريب شبكة المويجة العصبية

في تقليل عدد خطوات جيدة وخصوصا  شبكة المويجة العصبية في حل مسالة التصنيف والحصول على نتائج
وھي خوارزمية مرشح كالمان ، بينت المقارنة بين اثنين من خوارزميات التدريب  .الزمن اللازمة للتدريب

 خوارزمية سالة التصنيف افضلية استخدامالتي تم استخدامھما في م التقليدية المطور وخوارمية الانتشار العكسي
  .من حيث عدد خطوات الزمن اللازمة للتدريب مرشح كالمان المطور على خوارزمية الانحدار التدريجي
 

1. INTRODUCTION 

      Since the emergence of neural network, this field gains a great interest by the 
researchers and new structures of neural networks have been proposed. Wave-Net is 
one of the attractive structures of neural networks that combine the wavelet with neural 
network to give a new model [Deghani , Ahmadi , and Eghtesad  2008].  
      Many structures of neural networks have been introduced, beginning with the 
perceptron through Hopfield network, Feed forward neural network, radial basis neural 
network, etc. A new direction trying to combine two fields or more to give a new 
model, and all that toward building efficient neural network such as the hybrid neural 
fuzzy network and other hybrid structures[Cheng-Jian and Cheng-Hung 2005]. All the 
combinations of neural networks have been used extensively in classification, 
recognition, control, and other problems [Lin ,Quan, and Yao 2006] ,[ Puskorius , 
Feldkamp 1994]. 
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      Wavelet transform (WT) is a good tool for the analysis of signals and images. The 
main merit of wavelet transform over Fourier transform is the ability of specifying the 
time-frequency position [Kannan, Martin 1996]. Recent feature extraction methods 
utilize WT to get the best components to be used as an input vectors to the classifiers 
[Michael, Perz, Black, and Sammer  1993].    
       Learning process is the major problem with neural network where by which the 
effective parameters are specified. While the back propagation represent a nice 
procedure in the training of neural networks, but it carries a drawbacks, one of which 
is the problem of local minima [Dan 1996 ].  Many algorithms have been proposed for 
training neural networks in a trial to find a best and fast way for defining the weights 
and other parameters. 

Kalman filtering plays an essential role in systems theory and has found a wide 
range of applications in engineering and non-engineering systems.[Xiao, Xie and 
Minyue, 2008] ,[Dan 2002].. 

 This paper presents a way for training Wave-net by using extended Kalman filter 
and a comparison with another learning algorithm which is the Gradient descent 
method.      

2. WAVE-NET STRUCTURES 

Wave-net is a hierarchal structure network formed from artificial neural network 
(ANN) with mother wavelet function as its bases functions to produce powerful 
computational system for complex mapping and identification problems. 
Fig. 1 shows the  network design to solve identification problem with input layer  and  
one hidden layer with variable neurons and  depend on Mexican hat mother wavelet as  
a base of the hidden layer to produce outputs as a summation through the  weights of 
network. 

 
Fig. (1) Wave-Net structure 
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3. Network and Training Procedures 

A notation of (W) will be used to describe the weight matrix of the network which is a 
matrix of (c x m) dimensions, where c is the number of neurons in the hidden layer and 
m is the number of outputs as in Eq. (1) 
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The output of this network will be the sum of multiplication of the weights with the 
response of the wavelet function in hidden layer as cleared in Eq. (2) for a set of L 
input- out training vectors  
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Where   
Λ

iY : The ith output vector  

iX : The ith input vector 
2/2 2

)1()( tettMex −−=   is the Mexican hat mother wavelet function which is work here 
as a base function of the hidden neurons, 

2

b
dX

t k
i

i
k

−
=  : is the input the Mexican hat function of the ith input vector and kth 

neuron of the hidden layer 
dk: the translation parameter of the mother wavelet of the kth hidden neuron 
b: the dilation parameter of the mother wavelet. 
Eq. (3) shows the network (plant) description  

WZY =
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Now to train this network we have to find the error function and try to minimize the 
error  as cleared in Eq.(4) 

Λ

−= YYEr
          (4) 

Where Y is the desired output of the network, to get the best performance from 
network we should optimize it against its parameters (the weights and translation 
parameter of mother wavelet). Here we took the dilation parameter to be constant (b 
=1). For the first parameter it has shown in eq.(5) [Karayiannis, 1999]. 
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While for translation parameter for Mexican function mother wavelet as described in 
eq(6-8)  
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The Kalman filter addresses the general problem of trying to estimate the state of a 
discrete-time linear system process that is governed by the linear stochastic difference 
equations as in Eq.(9 & 10) [Kalman, 1960]. 
  

 xk = Axk-1 + wk-1       (9) 

 
And measurements equation:  
 
  yk =Hxk +vk        (10) 

 
The random variables wk and vk represent the process and measurement noise 
(respectively).They are assumed to be independent (of each other), white, and with 
Gaussian probability distributions 
 p(w) ~ N(0,Q) 
 p(v) ~ N(0,R) 



Q : the process noise covariance  
R: the measurement noise covariance 
 
but in our  work the wavelet function is non linear, so here  we can use extended 
Kalman filter to over come the non- linearity problem. We can linearize the estimation 
around the current estimate using the partial derivatives of the process and 
measurement functions to compute estimates even in the face of non-linear 
relationships as in Eq. (11 & 12). 

xk=f(xk-1)+wk        (11) 
yk=h(xk)+vk 

Eq. (13) shows that Extended Kalman filter can be derived by using first-order Taylor 
series approximations (neglecting higher order terms) 
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We can update the error and obtain the best prediction by the recursion as in Eq. (14 & 
15) 
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Now the desired estimation  can be obtained by the recursion described in Eq.(16) 
Λ

x

        (16) 
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Kk: Kalman gain.  
Pk: the covariance matrix of the state estimation error. 
Λ

kx : the state estimation  
Now to achieve the optimization problem in a form fit with Kalman filtering, we let 
the elements of the weight matrix W and the translation parameter of the mother 
wavelet d  to be the state of a nonlinear system, and we constitute the output of the 



wavelet network with the output of the nonlinear system to which the Kalman is 
applied. 
 The state of the nonlinear system can then be written as in eq. (16) 

[ TT
m

TT
n

T ddwwx ...... 11= ]             (16) 
 
       The block diagram of our proposed system is outlined in figure (2). The state of 
the system has been modeled depending on the weights of wavenet and the translation 
parameter of the Mexican hat base function. The initial value of the weights has been 
given the   same value, while the translation parameter is set to zero. After that a 
system noise (uncertainty) is added. 

The system will predict the output from input of current state and compare with 
training set output, the error will correct  the state of the system and  the system error 
covariance by changing  the Kalman gain  and system error covariance  

This process will continue until we get acceptable error, Then the network will be 
ready to use and solve the classification problem  
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Fig. (2) Wavenet Training block diagram 

 

4. RESULTS 

We use Fisher's Iris data set [Fisher,1936] to train and test our wave-net, the dataset 
consists of 50 samples from each of three species of Iris flowers (Iris setosa, Iris 
virginica and Iris versicolor). Four features were measured from each sample, they are 
the length and the width of sepal and petal, in centimeters. 

http://en.wikipedia.org/wiki/Sepal
http://en.wikipedia.org/wiki/Petal


A program of MATLAB R2008a is used to train the network using 50% of the data 
chosen randomly then it tested with the randomly chosen data, and the weights of the 
wave-net were chosen to be zeros initially. After some experiments we found that the 
best performance for the network was with in error rate of 0.001 to terminate the 
training. 
Here we test the network to check its performance. We change the number of hidden 
layer and start with multi values of covariances P,Q and R and the result was reported 
by  measuring the average of the CPU time for 10 trials also get the average of 
corrected outputs  for the input vectors as shown  in Fig. (3 & 4) 
 

 
 

Fig. (3) average CPU time before convergence against No. of cells in hidden layer with different 
initial covariances 

 
Fig..(4) Performance of the network against No. of cells in hidden layer with different initial 

covariances 



As we notice from results the network succeed to overcome classification problem 
with acceptable performance and with good time for CPU before the training converge 
or locked in local minima which can not improve its error anymore.  
Also its clear that initial covariances didn’t affect the training process with in the limits 
we took here in our  work (30, 40 and 60) while the number  of hidden layers usually 
improve the performance as increase till reach 6or 7 cells and the improvement will 
not be noticeable. 
The success of Kalman training is very clear in reducing the computational efforts in 
compare with conventional back propagation algorithm Resilient back propagation, 
Multilayer networks typically use sigmoid transfer functions in the hidden layers. The 
results are shown in Fig. (5). 

 
Fig. (5) average No. of iteration for learning process in logarithmic scale for both Kalman and 

back propagation algorithms training against No. of cells in hidden layer 

 

 

4. CONCLUSIONS 

Our work here shows that we can apply Kalman filter in training wave-net network 
and how this network succeed in classification problem.  
Furthermore the results we have got show the big role of Kalman filter in reducing the 
load on computer processing by reducing the number of iterations in learning phase 
when compare with back propagation learning algorithm. 
It’s suggested for future work to improve the performance of network to use the 
dilation parameter in addition to translation parameter and weights to minimize the 
error in training process to solve classification problem, 
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